26

CHAPTER 2

APPLYING THE PARADIGMS IN THE CREATION OF CATI

Iﬁ the last chapter, we saw that before computers can
reach optimal performance in education, more research will
have to focus on variables within CAI, and subject-matter
instructors will have to become involved in CAI implementa-
tion (having first appropriately revised their conceptions
of educational paradigms). Then, based on whatever
paradigms are found to be appropriate in guiding the use of
computers in education, on what is learned through research
about various aspvects of CAI, and on what we already know and
are finding out about how learning takes place in general,
effective software will have to be designed.

This chapter will pursue the principles already set
forth in showing how they were applied in designing the
interactive programming for the present project. In so
doihg, a process of creation for the non-programming
subject—matter instructor contemplating authoring courseware
will be defined. This process has the following four
stages: (1) deciding on mode of delivery, (2) considering
options for possible instructional paradigms appropriate to
CAI, (3) working from a definite theory of learning, and
having clear terminal goals in mind, and (4) considering
the advice and experience of others in settling on the

particulars of programming. In this chapter, these four

27

stages will be examined in greater detail in light of lesson

creation for this thesis project.

2.1 Deciding on Mode of Delivery

2.1.1 The Effect of Microcomputers on CAI Development

There are two considerations here, one concerning
hardware and the other software. With regard to the former,
educators have benefited immensely from the introduction of
easily obtainable microcomputers by Steve Wosniak and Steven
Jobs in the late 1970's. Durkee (1982:170) credits this
development with having prompted "a second wave of research
in CAI." Rowe (1983:190) concurs, noting that the "great
tide of CAI enthusiasm, which crested in the early seventies™
is experiencing a resurgence as "young educators" are
attracted to microcomputers. Burnett and Miller (1981-2:208)
say that because of the shift away from dependence on large
mainframes to stand alone systems, "it is now possible for
virtually any interested institution, or individual, to
begin developing and using computer-based instructional
materials . . "

This contention was evidenced at the 1983 TESOL
Convention in Toronto, where there was demonstrated innova-
tive courseware which had been programmed on Sinclair
microcomputers available in the United States for under $100.
As further evidence of this fact, consider the present

thesis project, which was conceived and developed on a home

28

microcomputer completely free, except for the experimental

portion itself, of any institutional backing.

2.1.2 The Pros and Cons of Authoring Systems

Having decided on hardware, the courseware author must
decide how he plans to code the lessons into the machine.
The primary decision is whether to use a standard program-
ming language or an authoring system. Use of either is a
trade-off. Programming languages will allow the courseware
author to relate more intimately with the computer than will
authoring systems, which have been designed especially for
ease of use by the non-programming lesson author. Increased
complexity of the programming language provides greater
versatility and therefore more options for format, types of
interaction, and the like. However, a programming language
might be much more difficult to learn and use, particularly
for a non-programming subject-matter instructor.

The caée has been made (Merrill, 1982) that the
limitations of CAI authoring languages are not compensated
for by ease of learning when compared to programming lan-
guages such as Pascal or Basic. Authoring languages provide
templates which allow courseware authors to concentrate on
lesson content more than on programming, but a template
"forces the author to turn out courseware which conforms to
the template. Such templates can have the effect of

enhancing the quality of courseware produced by the novice,

29

while restricting the quality of the courseware produced by
a creative author." (p. 77)

Merrill claims that the disadvantages of authoring
languages lie in the reasons that non-programming instructors
use them in the first place. Instructors use authoring
languages because they provide (1) a reduction of the domain
of possible commands, (2) commands and strategies "based on
an implied instructional strategy,"” and (3) commands or
routines which perform higher level tasks, relieving the
author of both the necessity and capability of learning how
to create such functions himself. (p. 76)

As to the first point, Merrill argues that when the
domain of commands is simplified, so are possible outcomes.
As to the second, although Merill allows that in PILOT,
authors are not forced to use tutorial strategy, and that
more creative programming is possible, he thinks that "the
very nature of principal PILOT commands strongly encourages
novice programmers to use a mediocre strategy," thus
compromising the quality of their output (p. 76). As to the
third, Merrill argues that programming languages are not
more difficult to learn than are authoring languages, and
that prospective authors should thus dispense with the
bother of learning the latter and delve straight into the
former, thereby allowing themselves more control over the

subroutines they invoke.

30

This last point is particularly contentious. Showing
in a chart how commands in PILOT often have BASIC and PASCAL
counterparts, and noting that one who has learned the former
will not have access to the higher capabilities inherent in
one of the latter languages, Merrill (p. 76) argues that
"if an author begins by learning PILOT and then desires
greater power, he must then scrap PILOT and begin learning a
new language. Why not begin with a powerful language in
the first place?" On the other hand, he also points out that
a language like PILOT is almost always learned in the context
of CAI, whereas programming languages must usually be
learned "in their total complexity . . . The PASCAL language
is élso embedded in a powerful but complex operating system,"
which the prospective CAI author must also learn to use.
Thus, although any of these languages should be equally easy
to learn in theory, in practice, it is easier for prospective
CAI authors to learn authoring systems.

Merrill's critique of authoring systems must be taken
seriously by those considering using one for CAI authoring.
However, the limitations which he notes may be overcome by
imaginative authors, especially ones who are aware of these
limitations and who deliberately seek out ways to circumvent
them. Smith (1982) has written a version of PILOT which
allows any legal BASIC command to be integrated into a PILOT
program, thus effecting higher level capabilities for PILOT.

Also, it is possible to find books explaining BASIC

S

programming purely in the context of CAI (for example,
Huntington, 1979). Meanwhile, Merrill's contention that

CAI authoring languages prevent lesson authors from exploring
the medium is turned against BASIC in Huntington's (1980:77)
assessment of that language as being limited by the ad
nauseum aspects of logical sequencing. Huntington finds
BASIC, in its unextended version, to be "grossly inadequate
for significant CAI development."

Time for learning a programming language was a factor
in the present project. Since at the beginning of the
project, the author neither knew PILOT nor had a good working
knowledge of BASIC, it was felt that for the amount of time
spent studying a programming code, one could with PILOT be
well assured of having, in a short time, the capability of
mastering the lahguage for the purposes of writing the
needed CAI lessons. Had the author spent the same amount of
time learning and programming in BASIC, the courseware
produced could not possibly have been as sophisticated as
that eveﬁtually produced with PILOT. Therefore the decision
to use PILOT as the most expedient means of programming the
CAI lessons conceived for this project appeared to be the
right one.

Of the two lessons created for this thesis project, the
one designated PDL allowed students to use game paddles to
select from among options in the lesson. This lesson was

designed to avoid the pitfalls mentioned by Merrill.

32

However, as it was found that PILOT did indeed allow "page
turner" programming, the second lesson, designated REG, was
deliberately created following a linearly structured drill
and practice paradigm. The latter lesson was to be compared
with the PDL lesson in the thesis experiment.

2.2 Considering Options for Possible Instructional Paradigms
Appropriate to CAI

A software developer must avoid educational paradigms
which are unsuitable to the nature of computing and select
from among those (mentioned in the previous chapter) which
are most effective with CAI. This was done for both CAI
lessons created for this project, although not to the same
extent.

2.2.1 Adapting Elements of Clarifying Educational
Environments

The lessons created for this project were designed so
as to fulfill the four criteria for Moore and Anderson's
clarifying educational environments. These four criteria
are that the environment must (1) allow the learner to vary
perspective, and be (2) autotelic, (3) productive, and
(4) perscnalized. We will now examine how the lessons
created for the project met these criteria.

(1) Both lessons allowed the learners to vary
perspective on their learning. The PDL lesson fulfilled
this criterion to a greater degree than did the REG lesson,

especially in that it allowed learners enhanced agent

33

capabilities in selecting sentences to be worked, and in

that learners could move from the inductive to deductive
portions of their lesson according to their individual whims
and learning styles. 1In problem mode, both lessons presented
equivalent linguistic data and then asked the students to

act on that data, thus allowing shifts from patient to agent;
however, this was a mechanical shift. Insofar as the
computer's reactions to input were not always predictable

to the students, both lessons allowed reciprocal perspective
as well.

(2) The CAI environment was designed to be autotelic;
that is, it was meant to be an activity free of consequences
and enjoyable for its own sake. This might have held to
some extent for those subjects who felt that they were
benefiting by using the computer, but in actual practice, it
is doubtful that the students in the thesis experiment
enjoyed a purely autotelic experience. They were told to
work the lessons, and then told how long they could take and
when to stop. Also, they were tested directly before and
afterwards, giving them the impression that they were being
judged on their performance. Although this rigidity was in
conflict with the intent of the lesson designer, it was
necessary for the integrity of the thesis experiment.
However, the lessons were meant as a resource to be used
voluntarily and non-threateningly by the students; hence

they were by design autotelic.

34

(3) The_CAI environment was productive; that is, what
was learned iﬁ that environment waé applicable to analogous
situations outside the learning environment.

(4) The CAI environment was personalized and reflexive.
A personalized environment is responsive to the learner's
activities. In order for the environment to be responsive,
according to Moore and Anderson (p. 65), it has to (a) permit
the learner to explore the environment freely, (b) give the
learner immediate feedback, (c) be self-pacing, (d) permit
the learner "to make full use of his capacity for discovering
relations of various kinds", and (e) be "so structured that
the learner is likely to make a series of interconnected
discoveries about the physical, cultural, or social world.
Both experimental lessons easily incorporated all of these
criteria, except that only the PDL lesson permitted free
exploration of the learning environment. Also, the PDL
lesson possibly allowed fuller use of the learners'
"capacities for discovering relations" and hence perhaps
increased the chance of the learners' making "interconnected
discoveries". Whether this was true was in fact the focus
of the thesis experiment.

Finally, the environment was to some extent reflexive,
i.e. facilitated the learner's seeing himself in a social
perspective. The setting of both lessons was such that the
learner had to identify with a raké named Max, whose foibles

were intended to cause the learner to consider himself in

35

the (anti) social situations in which Max found himself.

Thus the environment was reflexive to the degree the learners
placed themselves in its setting. Furthermore, learning
languages is inherently a reflexive activity, since profi-
ciency in that language facilitates interaction with the
environment in which that language is used. Hence, it is
safe to claim that each CALL lesson, and particularly the

PDL lesson, created a clarifying educational environment,

since each met all the above criteria.

2.2.2 Adapting Elements of Games

The CALL lessons created for the present project, in
particular the PDL lesson, had some characteristics of
games, although neither lesson was a game per se. They had
to some degree the elements of games enumerated by Stevick;
that is they had rules and goals, and the "players"
(particularly the PDL players) all had control over options
and something in common.

The goal of the "game" was to discover the grammar
governing the use of either gerund or infinitive complement
with the matrix verbs 'stop', 'remember', 'regret', and
'forget'. The elements common to all "players" were that
they all wanted (presumably) to discover the above-mentioned
rules, and that they could all relate to the context of the

lesson, wherein Max makes a fool of himself at a party and

36

spends the next day trying to piece together exactly what
he did the previous evening, before the lights went out.

The "game" had rules insofar as a computer program,
by definition, works according to "rules" or parameters set
by the programmer. Figuring out these rules is always one
of the objects of the "game" that computer users play with
computers, and hence one of the reasons that use of computers
in learning can be valuable in and of itself (especially if

these rules are not transparent).

2.2.3 Adapting Elements of the Berry Metaphor

The most important element in the PDL lesson created
for this thesis project was that students using the experi-
mental lesson were given control over their choice of
options in elucidating the rules governing both the computer
program and governing the grammar of English itself. They
made these choices by picking sentences off a chart in the
manner characterized by the berry-bush metaphor suagested
by Scollon and Scollon (1982).

This last point was the one about which the experimental
question revolved: to what degree is choice and control
crucial in effective CAI programming? Herriott (1982)
counsels against letting the computer take too much control,
as this can have a. lulling effect that might work to the
detriment of other benefits inherent in the medium. Instead,

he advises that students be given more control over their

37
direction in a course, even to the point of deciding when to
leave it. This capability was in fact one of the options
built into the experimental program designed for this project.
Marty (1981) stresses that computers should be programmed in
such a way that students have ultimate control over how they
adapt them to their individual learning styles. As he puts
it (p. 33), "The student should view the computer system as an
ally ready to help him learn as efficiently as hetcan, not
as a slave driver." Of the programs designed for this
project, the PDL one was an "ally", and the REG lesson a
"slave driver".

Thus we see that how one views the nature of computing
influences the creation of CAI materials. Now we shall turn
to considerations revolving about how one views both the
nature of learning, and the nature of the material to be
learned.

2.3 Working from a Definite Theory of Learning, and Having
Clear Goals in Mind

One frequently mentioned criticism of CAI is that
courseware is often produced which is not based on a viable
model of learning. Only by working from such a model can
one successfully attain whatever learning objectives have
been set. This section shall discuss the learning strategies
employed in the lessons developed for this project in light
of such considerations; for example, Wager's (1981-2)

adaptation of Gagnefs learning algorithm to CAI. I shall

38

then briefly mention other important programming
considerations. In the chapter following this one, I shall
discuss how the lessons were based on a viable model of the

specific grammar point taught in the lessons.

2.3.1 The Need for Theoretically-Based Software

The fact that existing educational software often lacks
a theoretical base is frequently mentionea in the literature.
The’(1982:52), for example, says that "software must be
designed with clear learning objectives in mind," a point
which is echoed by Bork (1981:4)l Steffin (1982a:25)
suggests that without such objectives, CAI might as well not
be used: "The ease with which we can design effective
instructional strategies that involve the use of the computer
and other media is directly related to the degree to which
we know what we want the learner to be able to do after
instruction Generally, in situations where learner
objectives are clear and agreed upon the computer is in an
excellent position to serve as an instructional tool. But
to the degree that objectives are vague or ambiguous, or
where there is wide discrepancy in the views of various
teachers about intended outcomes, lecture/recitation, class-
room discussion, written essays, or the viewing of well
prepared film or video demonstrations are likely to be more

useful tools than the computer."

39

Burnett and Miller (1981-2) developed some innovative
lessons giving reading instructors insights into the reading
process. In the authors' view, "the main feature of this
project lies in the adaptation of a viable model of the
reading process to a computer assisted instructional format."
(p. 218) For example, their model of learning dictated a
thoroughly inductive approach. Thus the authors feel that
the resulting exercises were "unique in that no factual
information is presented to the student; he discovers the
answers as more and more written language is presented."

In addition, metalanguage was totally dispensed with in the
lessons.

Feeling that(£1inductive approach best taught the
principles involved, Burnett and Miller created programs
that required prospective teachers to make predictions and
to draw conclusions about the reading process based solely
on the data presented in the programs. Accordingly, the
programs designed for the present project used a similar
strategy, except that the inductive phase was followed by a
deductively structured rule and recapitulation section. That
is to say that students initially had to rely solely on a
presentation of linguistic items and make sense of these

through appropriate setting and paraphrase.

40

2.3.2 Coal Directed Backward Chaining

Burnett and Miller (1981-2) used what is sometimes
called goal directed backward chaining in creating their
programs in three distinct stages. First, exercises were
conceptualized without consideration for programming limita-
tions. Next, the exercises were modified for the computer
(the major constraint at this stage being the size of the
text window). Finally, the program code was altered to
improve machine speed. Working in this way, they avoided
letting the medium dictate mode of delivery, a strategy
which can easily lead to shallow gimmickry.

The present CALL lessons followed exactly this line of
development. The author first "imagined" the exercises,
conceptualizing how the subject matter could best be taught
within the desired theoretical framework, and without con-
sidering constraints in programming. The latter were dealt
with only later. Thus the lessons produced had roots first
in the paradigms for education appropriate to the techno-
logical age espoused in the firét chapter, and second in
the author's assumptions about learning discussed here.
They were not built, for example, around a desire to use
the game paddles; rather the game paddles were employed as
a vehicle for carrying out a preconceived instructional

strategy.

41

2.3.3 Applying a Suitable Algorithm for Learning

Another trap to avoid in working in the medium of
computers is total reliance on the "relentless, linear
logic" which we have seen distracts novice courseware authors
using authoring systems such as PILOT. Wager (1981-2) is
concerned that users of such systems in particular show
"lack of concern with the application of principles for the
design of the instructional materials derived from a consis-
tent and valid theory base." (p. 269) He points out that
following the suggestions in manuals and guides accompanying
these authoring programs is unlikely to be of much help in
producing viable materials. "Without a sound theoretical
position it is difficult to come up with a consistent set of
rules for CAI lesson design." Such a set of rules would
"consider the types of learning, learner characteristics,
and the situation in which the CAI will be used." (p. 268)
In developing the lesson, the author would first classify
the objectives of the lesson, then properly sequence these
objectives, and finally produce program elements based on an
information processing model such as one developed by Gagné:

There are several algorithms adaptable to CAI; Wager
mentions tutorial, drill and practice, simulation, and games.
The first two can be distinguished by the fact that the
former (the tutorial) is used in acquiring a skill, while
the latter (drill and practice) is used in maintaining and

improving a skill (Vinsonhaler and Bass, 1972:30). This is

42

not however a universally held distinction; Kulik et al.
(1980:529), for example, considered any program that
"presented instruction directly to students" a tutorial,

and did not list drill and practice as one of their "four
major types of applications of the computer to instruction®.

Wager feels that the tutorial, as opposed to drill and
practice, simulation, or games, is the most efficient and
widely used presentation for CAI. Also, he feels that the
tutorial algorithm in particular seems amenable to adapta-
tion to a learning algorithm proposed by Gagnéﬂ which would
result in a CAI lesson having the following components:

(1) First, a motivating display would provide a set
for learning. (2) Next, objectives of the lesson would be
made clear. (3) The learner would then be informed of
what skills were necessary to do the lesson, or would be
given an entry quiz. (4) A stimulus would be presented in
the form of new information, a definition, a rule, or a
representative problem. (5) Some form of learning guidance,
(for example, framing the new informatibn in a meaningful
context) would then be presented. (6) Performance would be
elicited. (7) One of four types of feedback would be given.
(For more on feedback in CAI, see Swenson & Anderson, 1982.)
(8) Performance would then be assessed in a way that the
student would have some idea of his degree of mastery.

(9) Finally, steps would be taken to enhance retention and

transfer.

43

With the exception of numbers (3) and (9) above, these
steps were all present in the lessons developed for this
project. (No entry quiz was deemed necessary, and no steps
were taken to enhance retention since no CAI work was
envisioned beyond the experimental work.) The lessons began
with a set for learning (a title page), and this was
followed by a statement of objectives. After some further
"setting", a stimulus was presented by way of a chart from
which students would select sentence components. On
selecting each sentence, learning guidance was provided by
way of paraphrase. For each item, the students were then
asked a question, their responses elicited, and feedback
given.' At the end of the problem mode, performance was
assessed in a five-problem quiz.

In being aware of and applying current ideas in
learning, specialists in education can be expected to approach
CAI lesson design differently from (and possibly without the
assistance of) professional programmers. In their approach,
education specialists would likely opt to use a CAI
authoring system in lieu of a programming language, remaining
aware of possible paradigms for education applicable to the
programming task, possibly circumventing the paradigm
"suggested" by the creators of the authoring system. Further-
more, specialists in education could be expected to create
successful courseware by utilizing an algorithm for learning

based on a viable model of the learning process. Thus we

44

have compelling reasons for enlisting educators in the
creation of CAI programming.

Educators have a further advantage over programmers in
that they alone know the subject matter to be taught.
Focusing a thorough knowledge of this specific subject
matter into goals for terminal student performance is still
another component in the successful creation of viable CAT
materials. In the following chapter, we shall discuss in
greater detail the importance of a knowledge of English
grammar to the creation of the present pedagogically-based
CALL lessons. At present, we continue our discussion of
what a lesson author needs to consider in order to produce
courseware that will attain the goals ﬂxeaﬁthor has in
mind.

2.4 Considering the Advice and Experience of Others in
Settling on the Particulars of Programming

A final consideration in CAI lesson creation is to
acknowledge guidelires for programming based on the experi-
ence of others where appropriate. For example, the
following are suggestions noted by Thé‘(1982), each related
in turn to the lessons created for this project:

(1) The software should be friendly to the extent that
getting from one place in the program to another is no more
difficult than thumbing through a book. This capability

was to a degree programmed into the PDL lesson in that

45

students were able to at least choose and control what
section of the lesson they wanted to work in. However, it
was deliberately omitted from the REG lesson, thus enabling
the researcher to test the effectiveness of this variable.

(2) Use of the program should be self-explanatory.
Both of the experimental programs were in fact designed to
be self-explanatory. 1In practice, students usually needed
no assistance with the REG program, and the PDL program
contained an explanation. But as this explanation was
difficult for non-native speakers to understand, use of the
lesson was explained personally to each student. Inciden-
tally, much effort was invested in trying to make the PDL
lesson truly self-explanatory, but each successive attempt
was somehow flawed; in the end, a few words from the
researcher proved to be the most expedient and effective
means of explanation.

(3) Software should present information clearly and in
consistent format and include all the cues to comprehension
(i.e. upper and lower case) found in printed matter. Pains
were taken in the experimental lessons to see that format
was held constant. Also, PILOT has the advantage over
BASIC (on the standardly equipped Apple II+) that it allows
upper and lower case.

(4) Educational software should use color, graphics,
and sound when appropriate, and allow automatic remedial

branching. In short, "it should exploit the unique

46

capabilities of the computer There is no reason to
buy software that isn't superior to a book." (1982:114)
Except for the fact that color was not used, the experi-
mental lessons incorporated all of these elements unique to
computers. Use of color is easily invoked with PILOT, but
color monitors were not available at any of the experimental
locations, and this is why these lessons made no use of
PILOT's color capabilities. (For more on graphics in CATI,
See Alessandrini, 1982).

(5) Appropriate reinforcement should be provided, and
should help the student "not only catch mistakes but analyze
them for patterns, which helps the [student] understand how
he made the mistake, and not just that he made it." (Thé:
1982:110) This feedback should be kept simple, according to
Marty (1981), who also notes that errors students correct on
their own are less likely to recur than are other errors.
Feedback in the present lessons was so designed that students
would be guided into correct responses on second attempts at
answering questions correctly.

(6) The program should accept a wide range of correct
answers so as to avoid telling the student he is wrong when
he isn't. This is one of the most difficult tenets to
follow in programming CAI. The present lessons circumvented
this problem by restricting the range of possible answers.

If the student deviated from this range, he was given

47

feedback which guided him back into range. Thus, there was
never an instance in the experimental programs where students
received inappropriate responses to their input to the
computer.

(7) Finally, The/echoes Moore and Anderson in saying
that the more flexibility allowed in the ways the lesson
material can be presented and sequenced, or in the levels of
difficulty available, the better. These experimental
programs did not take into consideration levels of difficulty;
but the PDL lesson allowed variation in presentation and
sequencing. In these lessons, students were allowed to
choose between inductive and deductive presentations, and to
control the sequence of these presentations and of items in
the problem mode.

From the preceding two chapters, it can be seen that the
lessons created for this thesis project (1) followed
paradigms for education consistent with the nature of
computing, (2) adhered to instructional strategies having
some theoretical basis, and (3) utilized the experience of
previous programmers in incorporating certain principles of
successful CAI programming. We know also that viable CAI
must be based on a thorough knowledge of the subject matter
to be taught; thus it shall be shown in the next chapter how
the lessons created for this project utilized pedagogically

sound lesson materials.

